

D2C - Designed to Customer

Designed to Customer è il pensiero guida che descrive al meglio la ricetta del successo di REICH.

Oltre ai prodotti del catalogo, i nostri clienti possono anche richiedere giunti sviluppati per le loro specifiche esigenze.

In questi casi, la loro costruzione ricorre a componenti modulari, in modo da mettere a punto soluzioni efficienti ed efficaci. La stretta collaborazione tutta speciale con i nostri partner va dalla consulenza allo sviluppo, al dimensionamento, alla produzione, all'integrazione negli ambienti già esistenti fino a soluzioni di produzione e logistica specifiche per il cliente e di assistenza post-vendita, il tutto a livello globale.

Questo approccio orientato al cliente vale sia per i prodotti di serie che per gli sviluppi prodotti in piccoli lotti.

I principi della filosofia aziendale di REICH si basano in maniera determinante sulla soddisfazione del cliente, sulla flessibilità, sulla qualità, sulla capacità di fornitura e sulla capacità di adattamento alle esigenze della clientela.

REICH non fornisce solo giunti, ma soluzioni:

Designed to Customer – SIMPLY **POWERFUL.**

Illustrazione del giunto

04 Descrizione tecnica generale

05 Vantaggi

06 Struttura tecnica

07 Dati tecnici generali

08 Scelta della grandezza del giunto

11 Dentatura standard del mozzo

12 Spostamento consentito dell'albero

13 Flangia di supporto per pompe (PTF)

14 Dati necessari per la scelta della grandezza del giunto

Tabelle dimensionali.

09 Struttura costruttiva RCT...F2

10 Struttura costruttiva RCT...F2S

Descrizione tecnica generale

RCT

Accoppiamento a flangia rigido alla torsione per azionamenti pompa

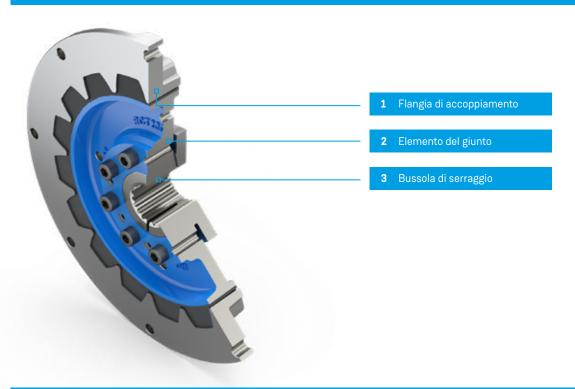
Con il giunto RCT, REICH propone una soluzione di azionamento ottimale per il collegamento dei motori diesel alle pompe idrauliche. Grazie alla rigidità alla torsione del giunto RCT, è possibile spostare le risonanze critiche nella zona al di sopra delle velocità d'esercizio. In questo modo è possibile ottenere l'esercizio sottocritico dell'azionamento senza dover attraversare ampiezze di oscillazione pericolose.

Simile al giunto ARCUSAFLEX®, la cui validità è attestata ormai da decenni, il nuovo giunto RCT è un accoppiamento a flangia innestabile in senso assiale. L'elemento del giunto è composto da un robusto corpo interno in metallo dotato di un sottile rivestimento in gomma che smorza efficacemente gli impulsi angolari. Inoltre è possibile compensare i piccoli spostamenti assiali, radiali e angolari, che si verificano di consueto negli azionamenti idraulici flangiati.

Numerosi profili dentati normalizzati consentono il collegamento di bloccaggio privo di gioco del giunto RCT all'albero della pompa, le flange di accoppiamento sono adattate alle dimensioni del volano a norma SAE.

REICH propone a integrazione una vasta gamma di flange di supporto per pompe con le quali può essere collegata la maggior parte dei motori a combustione e delle pompe idrauliche.

Infine, sempre in linea col principio "D2C - Designed to Customer", REICH è in grado di sviluppare soluzioni ottimali anche per le strutture costruttive speciali.


Vantaggi

Le caratteristiche e i vantaggi principali del giunto RCT:

- L'elevata resistenza alla torsione consente un esercizio al di sotto della soglia critica
- Il rivestimento elastico in gomma smorza le vibrazioni e gli impulsi angolari
- Elevata capacità di coppia, resistente alle perforazioni
- Temperature ambiente da -25 °C a +100 °C
- Compatto, robusto, non richiede manutenzione
- Semplice da montare grazie alla possibilità di innesto assiale
- Collegamento albero-mozzo privo di gioco
- Compensazione degli spostamenti assiali, radiali e angolari
- Dentatura di collegamento all'albero della pompa disponibile in numerose versioni
- Flange di supporto per pompe idonee per pressoché qualunque situazione di montaggio

Struttura tecnica

Struttura e materiali del giunto RCT

Panoramica dei materiali

N. parte	Descrizione	Materiali
1	Flangia di accoppiamento	Alluminio
2	Elemento del giunto	Ghisa / gomma
3	Bussola di serraggio	Acciaio

Avvertenze tecniche generali

I dati tecnici indicati si riferiscono solo ai giunti veri e propri o ai relativi elementi del giunto. L'utente è responsabile dell'eventuale sollecitazione non consentita sui componenti. Si dovranno verificare in particolare le coppie da trasmettere a cura dei collegamenti, ad esempio i collegamenti a vite. Eventualmente saranno necessarie altre misure, come ad esempio l'ulteriore rinforzo con spine. L'utente è inoltre responsabile del sufficiente dimensionamento del collegamento dell'albero e della linguetta, e/o di altri collegamenti, ad es. collegamenti di serraggio e a morsetto. Tutti i componenti che possono arrugginire sono di norma protetti dalla corrosione.

REICH propone una vasta gamma di giunti e sistemi di accoppiamento idonei per quasi tutti gli azionamenti. È inoltre possibile mettere a punto soluzioni specifiche per il cliente, che possono essere prodotte anche in piccole serie e come prototipi. Esistono inoltre numerosi programmi di calcolo con i quali si possono ottenere tutti i dimensionamenti necessari.

Dati tecnici generali

Struttui	ra costrut	tiva stan	dard										
Grandezza del giunto	Coppia nominale	Coppia massima	Coppia di fatica permanente	Rigidità (Rigidità dinamica della molla di torsione ${\rm C}_{T \; \rm dyn}$				Dimensioni flangia SAE J 620	Numero di giri massimo		nto massimo albero angolare	
	T _{KN}	T _{K max}	T _{KW (10 Hz)}		[kNm	n/rad]		Ψ		n _{max}	ΔK_r	ΔK _w	
	[Nm]	[Nm]	[Nm]	0,25 T _{KN}	0,5 T _{KN}	0,75 T _{KN}	1,0 T _{KN}			[min ⁻¹]	[mm]	[°]	
									6,5	4200			
30	300	900	150	45	80	110	130	1,6	7,5	4200	±0,5	±0,5	
									8	4200			
									8	4200			
65	650	1950	325	115	215	280	325	1,6	10	3600	±0,5	±0,5	
									11,5	3500			
120	1200	3600	600	265	510	940	1110	1,6	10	3600	±0,5	±0,5	
120	1200	3 000	000	203	510	340	1110	1,0	11,5	3500	10,0	10,5	
									10	3600			
230	2300	6900	1150	675	1220	1810	2130	1,6	11,5	3500	±0,5	±0,5	
									14	3000			
500	5000	15 0 0 0	2500	2200	4000	5900	6950	1,6	14	3000	±0,5	±0,5	

Giunto e flangia di supporto per pompe											
Grandezza del giunto	Versione a flangia	Collegamento del volano a norma SAE	Lunghezza totale del giunto	con flangia di supporto per pompe	Collegamento dell'alloggiamento motore a norma SAE	Attacco pompa a norma SAE	Lunghezza della flangia di supporto per pompe	Flangia a 2 o a 4 fori			
RCT 120	F2.	11,5.	63.	PTF	3 -	C.	45.	4			

Descrizione: RCT 120 F2. 11,5. 63. PTF 3-C. 45. 4

-	Foro			
	atura in versione a norma ANSI o DIN 5480	Dimensioni dentatura	Numero di denti	Lunghezza dentatura
ANSI	B92.1	- 16/32 -	21	L=54
DIN 5	480	N45x2x30x	21	L=54

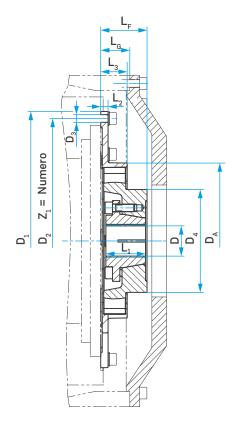
Descrizione: ANSI B92.1 - 16/32 - 21T L=54 oppure DIN 5480 N45x2x30x21 L=54 -

Scelta della grandezza del giunto

Il dimensionamento dei giunti RCT viene effettuato di norma a seconda della coppia motrice. In questo caso occorre tener conto di un fattore generico di sicurezza di $S = da\ 1,1\ a\ 1,3$. Su richiesta è possibile effettuare un'analisi tecnica dal punto di vista della vibrazione torsionale.

Per la scelta della grandezza del giunto occorre tenere presente le seguenti condizioni:

 \blacksquare La **coppia nominale T**_{KN} **del giunto**, tenendo conto dei fattori di dimensionamento, deve essere pari almeno alla coppia motrice.

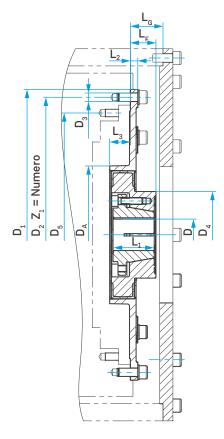

 $T_{KN} \ge T_{AN} \cdot S$

☐ Calcolo della coppia motrice T_{AN}

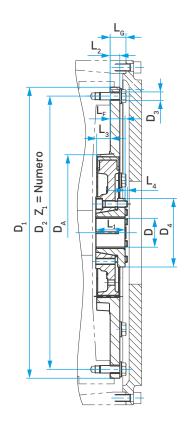
La coppia motrice si calcola con la potenza di azionamento P_{AN} e il numero di giri del giunto n_{AN}

 $T_{AN}[Nm] = 9550 \frac{P_{AN}[kW]}{n_{AN}[min^{-1}]}$

Struttura costruttiva RCT...F2.


 $Z_1 = Numero$ $\square_{_{\underline{1}}}$

Struttura costruttiva lunga Fig. 1


Struttura costruttiva lunga Fig. 2

			Att	acco flar	ngia													Massa	
Grandezza del giunto	Fig.	SAE J 620	D ₁	D ₂	D ₃	Z ₁	D max.	D _A	D ₄	L ₁	L ₂	L ₃	L ₄	L _F	L _G	J ₁	J ₂	totale	
		3 020	[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kgm ²]		[kg]	
		6,5	215,9	200,0	8,5	6								51,0	30,2	0,0027		2,1	
30	1	7,5	241,3	222,3	8,5	8	40,0	137,0	76,0	44,0	10,0	10,0 30,0	30,0 -		30,2	0,0041	0,002	2,2	
		8	263,5	244,5	10,5	6								±2,0	62,0	0,0046		2,2	
		8	263,5	244,5	10,5	6								58,0	62,0	0,0060		4,0	
65	1	10	314,3	295,3	10,5	8	46,0	167,0	105,0	50,0	10,0	34,0	_		53,8	0,0105	0,007	4,3	
		11,5	352,4	333,4	10,5	8								±2,0	39,6	0,0153		4,5	
100	1	10	314,3	295,3	10,5	8	F1.0	010.0	140.0	F4.0	10.0	20.0		63,0	53,8	0,0133	0.005	7,5	
120	1	11,5	352,4	333,4	10,5	8	51,0	212,0	140,0	54,0	10,0	36,0	-	±2,0	39,6	0,0170	0,025	7,6	
		10	314,3	295,3	10,5	8								45,5	53,8	0,0235		8,0	
230	2	11,5	352,4	333,4	10,5	8	51,0	250,0	110,0	47,0	16,5	37,0	10,0		39,6	0,0392	0,04	8,6	
		14	466,7	438,2	13,0	8								±1,5	25,4	0,1230		10,6	
500		44	4007	400.0	40.0	0	00.0	057.0	4500	47,0					47,0		0.444.0		47.0
500	2	14	466,7	438,2	13,0	8	80,0	357,0	150,0		47,0 16,5	16,5 40,0	10,0	±3,0	25,4	0,1110	0,18	17,8	

Struttura costruttiva RCT...F2S.

Struttura costruttiva corta Fig. 2

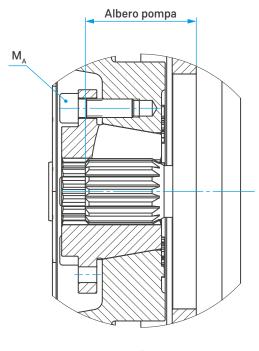
			Att	acco flar	ngia													Massa
Grandezza del giunto	Fig.	SAE J620	D ₁	D ₂	D ₃	Z ₁	D max.	D _A	D ₄	L ₁	L ₂	L ₃	L ₄	L _F	L _G	J ₁ esterno	J ₂	totale
			[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kgm ²]	[kgm ²]	[kg]
		6,5	215,9	200,0	8,5	6								28,0	30,2	0,0027		2,1
30	1	7,5	241,3	222,3	8,5	8	40,0	137,0	76,0	44,0	9,0	21,0	-		30,2	0,0041	0,002	2,2
		8	263,5	244,5	10,5	6								±2,0	62,0	0,0046		2,2
		8	263,5	244,5	10,5	6		167,0						31,0	62,0	0,0060		4,0
65	1	10	314,3	295,3	10,5	8	46,0		105,0	50,0	9,0	25,0	_		53,8	0,0105	0,007	4,3
		11,5	352,4	333,4	10,5	8								±2,0	39,6	0,0153		4,5
100		10	314,3	295,3	10,5	8	F4.0	040.0	1400	540	0.0	07.0		34,0	53,8	0,0133	0.005	7,5
120	1	11,5	352,4	333,4	10,5	8	51,0	212,0	140,0	54,0	9,0	27,0	-	±2,0	39,6	0,0170	0,025	7,6
		10	314,3	295,3	10,5	8								24,0	53,8	0,0235		8,0
230	2	11,5	352,4	333,4	10,5	8	51,0	250,0	110,0	47,0	15,5	21,5	≈3		39,6	0,0392	392 0,04	8,6
		14	466,7	438,2	13,0	8								±1,5	25,4	0,1230		10,6

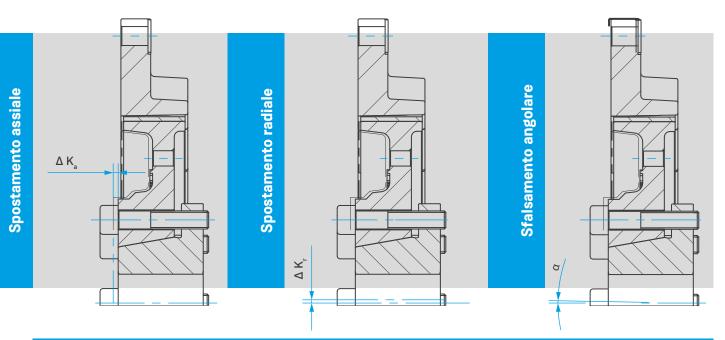
La struttura costruttiva corta richiede uno spazio sufficiente nel volano; la fattibilità deve essere verificata a cura del cliente

Dentature standard del mozzo

Dentature preferite

	Dimensioni dentatura		Gran	dezza del gi	unto	
		RCT 30	RCT 65	RCT 120	RCT 230	RCT 500
	16/32 - 9T	•				
	16/32 - 13T	•	•			
	16/32 - 15T	•	•	•	•	
ss 6	12/24 - 14T	•	•	•	•	
.1 cla	16/32 - 23T	•	•	•	•	
B92	12/24 - 17T	•	•	•	•	
ANSI B92.1 class 6	16/32 - 27T		•	•	•	•
	8/16 - 13T		•	•	•	•
	8/16 - 15T					•
	8/16 - 17T			•	•	•
	25x1,25x18	•	•			
	30x2x14	•	•	•	•	
	35x2x16	•	•	•	•	
- 9H	40x2x18	•	•	•	•	
480	45x2x21		•	•	•	
DIN 5480 - 9H	50x2x24			•	•	•
_	55x2x26					
	60x2x28					
	70x3x22					



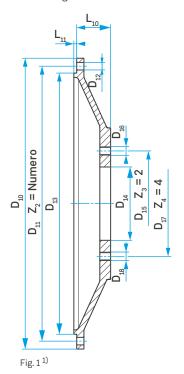

Fig. 1

i Profili dentati diversi e foro finito con scanalatura su richiesta

Coppie di serraggio M _A											
Grandezza del giunto		RCT 30	RCT 65	RCT 120	RCT 230	RCT 500					
Dimensioni della vite		M6	M8		M10						
Coppie di serraggio M _A	[Nm]	14	35		69						

Spostamento consentito dell'albero

L'ammissibilità di spostamenti di maggiore entità dell'albero dipende da diversi fattori, come ad es. la grandezza del giunto, la durezza dell'elemento, la velocità d'esercizio e la sollecitazione del giunto dovuta alla coppia. I valori indicativi riportati qui di seguito si riferiscono ad una velocità d'esercizio ≈ 1 500 min⁻¹. L'allineamento preciso evita l'usura precoce dell'elemento in gomma. Attenersi alle istruzioni per l'uso.

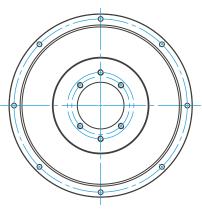


Dati tecnici							
Grandezza del giunto			RCT 30	RCT 65	RCT 120	RCT 230	RCT 500
Max. spostamento assiale consentito	ΔK _a	[mm]	±2,0	±2,0	±2,0	±1,5	±3,0
Max. spostamento radiale consentito	ΔK _r	[mm]	±0,5	±0,5	±0,5	±0,5	±0,5
Max. sfalsamento angolare consentito	α	[°]	±0,5	±0,5	±0,5	±0,5	±0,5

(i) Gli spostamenti di maggiore entità che si verificano per breve tempo, ad esempio durante l'accensi<u>one e lo spegnimento di un motore</u> diesel, sono consentiti. Ulteriori indicazioni di montaggio sono riportate nelle istruzioni per l'uso.

Flangia di supportoper pompe PTF

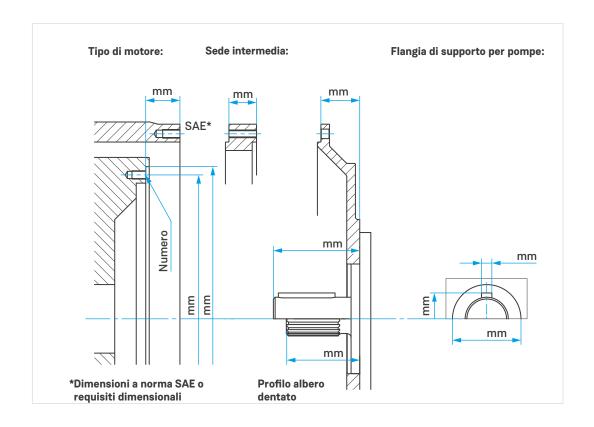
Ad integrazione dei giunti RCT, REICH propone flange di supporto per pompe idonee: con l'ausilio della flangia di supporto per pompe, il corpo pompa viene montato sul carter coprivolano. La potenza viene trasmessa dal volano del motore all'albero della pompa mediante il giunto RCT.



Pompa idraulica

Fla	angia	а	2-4	for

Dati flangia																			
Alloggiamento	Flangia pompa SAE J 744		Lato n	notore			Lato pompa												
motore SAE J 617	2-4 fori	D ₁₀	D ₁₁	Z ₂	D ₁₂	D ₁₃	D ₁₄	D ₁₅	Z ₃	D ₁₆	D ₁₇	Z ₄	D ₁₈	L ₁₀	L ₁₁				
		[mm]	[mm]		[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		[mm]	[mm]	[mm]				
5	A ²⁾	250.0	222.4	8	11.0	214.2	82,55	106,4	2		-	-			4.0				
5	В	356,0	333,4	8	11,0	314,3	101,6	146,0	2	ţe _	127,0	4	je je	0	4,0				
	A ²⁾						82,55	106,4	2	cliente	-	-	cliente	iji					
4	В	404,0	381,0	12	11,0	362,0	101,6	146,0	2	delc	127,0	4	delc	a seconda del caso specífico	4,0				
	С						127,0	181,0	2		161,9	4							
	В						101,6	146,0	2	esigenze	127,0	4	esigenze	cas					
3	С	451.0	400.0	12	11.0	409,6	127,0	181,0	2	igi	161,9	4	98.	del	4.0				
3	D	451,0	428,6	12	11,0	409,6	152,4	228,6	2		228,6	4		nda	4,0				
	Е						165,1	317,5	2	o pc	317,5	4	орс	COL					
	С						127,0	181,0	2	secondo le	161,9	4	secondo le						
2	D	489,0	466,7	12	11,0	447,7	152,4	228,6	2		228,6	4			5,0				
	Е						165,1	317,5	2	ţ	317,5	4	tur	Lunghezza					
	С						127,0	181,0	2	<u> </u>	161,9	4	Filettatura	8 L					
1	D	552,0	530,2	12	12,0	511,2	511,2	511,2	511,2	511,2	152,4	228,6	2	Ē	228,6	4	Ē		5,0
	Е						165,1	317,5	2		317,5	4							

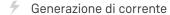

1) Flangia di supporto per pompe/contorno eventualmente diverso 2) Solo flangia a 2 fori

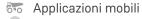
i La scelta della flangia di supporto per pompe e del giunto RCT deve essere verificata da REICH a seconda della situazione di montaggio data del comando pompa.

Dati necessari per la scelta della grandezza del giunto

Lato motore: Tipo di motore: Potenza motore: P [kW] Numero di giri motore: n [min⁻¹] Motore in linea / a V: Linea / V (angolo) Numero di cilindri: Cilindrata totale: V_H [ccm] Momento di inerzia (motore + volano): J [kgm²] Grafico della pressione del gas: 9. Regole / dati necessari per la scelta della grandezza del giunto: 10. Disegno del volano del motore e dell'alloggiamento del motore con indicazione della posizione:

Disegno della macchina di azionamento:


Note



Soluzioni per i seguenti settori:

ndustria 🌣

🛈 Tecnologia navale e marittima

Sede principale:

Dipl.-Ing. Herwarth Reich GmbH Vierhausstrasse 53 · 44807 Bochum

+49 234 959 16 - 0

🔞 www.reich-kupplungen.com

Osservare la menzione di riserva ISO 16016

Sono proibiti l'inoltro e la riproduzione di questo documento, nonché l'uso e la comunicazione del suo contenuto se non esplicitamente autorizzati. La mancata osservanza di detta disposizione comporterà il risarcimento dei danni. Tutti i diritti riservati in caso di registrazione di brevetto, di modello di utilità o di modello ornamentale. © REICH - Dipl.- Ing. Herwarth Reich GmbH

Versione marzo 2022

Il presente catalogo RCT annulla e sostituisce in parte la documentazione precedente relativa ai prodotti RCT. Tutte le misure in millimetri. Con riserva di modifiche dimensionali e costruttive. I testi, le figure, i dati dimensionali e di potenza sono stati riuniti con grande attenzione. Ciononostante si declina qualsiasi responsabilità per la loro correttezza; in particolare non si garantisce la concordanza della tecnologia, del colore, della forma e delle dotazioni dei prodotti con quanto illustrato nelle figure, né la corrispondenza delle proporzioni dei prodotti con quelle illustrate in figura. Con riserva di modifiche a causa di imprecisioni o di errori di stampa.